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MATERIALS AND METHODS

Cell strains

We used W3110 and B/r derivative E. coli strains in this study. To remove their motility, we
knocked out fliC from W3110, which encodes flagellin (fliC gene does not exist in B/r). We also
removed fimA and flu from both strains to diminish non-specific adhesion to the internal surface
of the device and the tubes [1]. We designated those mutated strains constructed from W3110
and B/r as F3 and BrF2, respectively.

To facilitate the image analysis, we introduced fluorescent reporters into F3 and BrF2. F3
rpsL-gfp and BrF2 rpsL-gfp harbor a low copy plasmid, pUA66-rpsL [2, 3], from which GFPmut2
is expressed under the control of the rpsL promoter. F3 T7-venus expresses YFP-Venus [6](40)
under the control of T7 promoter integrated at the intC locus on the chromosome. We also
integrated lacUV5 promoter and T7 RNA polymerase gene at the lacZ locus of the chromosome.
lacUV5 promoter and T7 RNA polymerase gene were cloned from BL21 (DE3) (TAKARA).
F3 LVS expresses Venus-SmR fusion protein under the control of PLlacO-1 promoter [4] from
the intC locus on the chromosome. F3 LVS was originally constructed for a different study,
and employed here as a representative strain that expresses a fluorescent reporter from the
chromosome. The streptomycin-resistant gene, smR, was cloned from the plasmid pKP2375 (a
kind gift from Dr. Hironori Niki at National Institute of Genetics, Japan).

To create these strains, the genes and the promoters were first assembled on the plasmids.
Genome integration and gene knock-out were done according to the standard λ-Red recombina-
tion [5]. The names and genotypes of the constructed E. coli strains were listed in SI Appendix
Table S2.

Culture conditions

We used M9 minimal medium (M9 minimal salt (Difco) + 2 mM MgSO4 (Wako) + 0.1 mM
CaCl2 (Wako)) as a base, and supplemented it with either glucose (Wako) + 1/2 MEM amino
acids solution (Sigma), glycerol (Wako), casamino acids (Wako) + glucose, or LB medium +
1/2 MEM amino acids solution. The names of the culture media and their compositions are
listed in SI Appendix Table S3. For the cultures of F3 T7-venus and F3 LVS, we also added 0.1
mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) as an inducer of the fluorescence reporter.
We used two temperature settings, 30◦C and 37◦C, to prepare different growth conditions.

Microfabrication

For constructing growth channels and flow channels, we prepared two types of photomasks:
one for flow channels, and the other for growth channels. For making photomasks, we first
coated 1,000-angstrom-thick chromium layer on a clean glass slide by evaporative deposition
(SVC-700TM, Sanyu). We then spin-coated a positive photoresist (OFPR-800, Tokyo Ohka
Kogyo) on the Cr-coated glass slide. According to the CAD design, we exposed a part of the
photoresist layer by laser drawing (DDB-3TH, Neoark), and developed it in NMD-3 (Tokyo
Ohka Kogyo). The uncovered part of the Cr-layer was removed in MPM-E30 (INTEC). The
remaining photoresist layer was removed by aceton. Lastly, the slide was rinsed in MilliQ water
and air-dried.

We implemented two-step chemical etching for fabricating the two types of microchannels on
a glass coverslip. First, we coated 1,000-angstrom Cr-layer on a clean coverslip (NEO Micro glass,
No. 1., 24 mm×60 mm, Matsunami) by evaporative deposition. We then spin-coated OFPR-800
photoresist and exposed it to UV light utilizing mercury lamp of microscope (Type USH-102D,
USHIO) with the photomask for flow channels. After the development of photoresist in NMD-3
and the Cr-patterning in MPM-E30, the exposed part of the coverslip was etched in buffered
hydrofluoric acid solution (110-BHF, Morita Kagaku Kogyo) for four hours at 23◦C. The etching
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reaction was stopped by soaking the coverslip in milliQ water. The remaining photoresist and
the Cr-layer were removed by aceton and MPM-E30, respectively. This coverslip was washed
by sonication in ethanol and milliQ water for the second round of the channel fabrication. We
repeated the same procedure as above for creating growth channels on the coverslip with flow
channels except 1) the photomask for growth channels was used; and 2) the duration of chemical
etching was 15 min. The final dimension of one flow channel was 2,000 µm (L)×50 µm (W)×15
µm (D), and that of one growth channel was 30 µm (L)×3 µm (W)×1 µm (D) (SI Appendix
Fig. S1).

To make PDMS pad with bubble trap groove, we cut out two pieces of 9 mm×1 mm and one
piece of 7 mm×1 mm rectangles from frame-seal chamber (Biorad). These were sealed on the
bottom of a plastic culture dish to form 9 mm×9 mm u-shape, and used as the mold for PDMS.
A well-mixed PDMS (Sylgard 184, Part A: Part B = 10:1) was poured onto the mold with the
final target thickness ca. 5 mm. The air bubbles were removed under a decreased pressure for
30 min. The PDMS was cured at 65◦C for one hour, and 20 mm×20 mm squared PDMS pad
was cut out by blade. We punched out three holes (φ =2 mm) at the positions shown in SI
Appendix Fig. S1A, and 10-cm long silicone tubes (SR-1554, Tigers Polymer Corp., outer φ = 2
mm, inner φ = 1 mm) were inserted into the holes. The tubes were fixed to the holes by gluing
them with a small amount of PDMS. This PDMS pad was washed in isopropanol by sonication
and autoclaved for the single-cell measurements.

Chemical decoration of coverslip and cellulose membrane

We first washed the microfabricated coverslip by sonication in contaminon (Wako), ethanol
(Wako), and 0.1M NaOH solution (Wako), and dried it at 140◦C for 30 min. To create amino
group on the glass surface, the washed coverslip was soaked in
1% (v/v) 3-(2-aminoethylaminopropyl)trimethoxysilane solution (Shinetsu Kagaku Kogyo) for
30 min and heated at 140◦C for 30 min. The treated coverslip was washed in milliQ water for
15 min, and dried at 140◦C for 30 min. 1 mg NHS-LC-LC-Biotin (Funakoshi) was dissolved in
25 µl dimethyl sulfoxide and dispersed in 1 ml phosphate buffer (0.1 mM, pH8.0). 200 µl of this
biotin solution was placed on the coverslip, and incubated at room temperature for four hours.
The biotin solution was removed by soaking the coverslip in milliQ water.

We used streptavidin-decorated cellulose membrane to cover the growth and flow channels
in the device. A 3 cm×3 cm cut cellulose membrane (Spectra/Por 7, MWCO 25,000) was
washed in milliQ water, and incubated by gentle shake for four hours at 25◦C. After the wash in
milliQ water, the treated membrane was incubated in 500-µl solution of streptavidin hydrazyde
(Funakoshi) (10 µg/ml, dissolved in 0.1 mM phosphate buffer (pH7.0)) by gentle shake for 14
hours at 25◦C. The membrane was again washed in milliQ water and stored at 4◦C.

Single-cell time-lapse observation

To prepare E. coli cells for single-cell observation, we first inoculated a glycerol stock into 2-ml
culture medium, and incubated it by shaking overnight under the same conditions of culture
medium and temperature as those used in the time-lapse measurement. 10 µl of the overnight
culture was inoculated in 2-ml fresh culture medium and incubated with shaking until the
optical density reaches 0.2∼0.5 at λ= 600 nm. This exponential-phase culture was diluted to
OD600=0.05, and loaded onto the device.

0.5 µl of the prepared cell culture was spotted on the growth channel region on the cover-
slip, and covered by the streptavidin-decorated cellulose membrane. Removing an excess cell
culture by filter paper allowed the membrane to contact with the glass surface, where the biotin-
streptavidin bonding was formed. During this process, a small number of cells were trapped
randomly in the growth channels. A 20-µl fresh medium was placed on the membrane to avoid
drying, and a PDMS pad was attached to the coverslip via a two-sided-seal frame-seal chamber
(Biorad). This device assembly was connected to the silicone tubes on the microscope stage to
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flow culture medium. Culture media were flown at the rate of 10 ml/h for the first five minutes
to remove the cells outside the growth channels, and at 2∼10 ml/h thereafter using a syringe
pump (NE-1000, New Era Pump Systems) depending on the growth rate of the cells in each ex-
perimental condition. The high flow rates in the fast growth conditions were used for effectively
removing cells from the device, not for changing the growth rates.

We used Nikon Ti-E microscope equipped with a thermostat chamber (TIZHB, Tokai Hit),
100x oil immersion objective (PlanFluor, N.A. 1.30, Nikon, or Plan Apo λ, N.A. 1.45, Nikon),
cooled CCD camera (ORCA-R2, Hamamatsu Photonics), and LED excitation light source
(DC2100, Thorlabs). The microscope was controlled by micromanager (https://micro-manager.org/).
Before starting time-lapse, we let the cells in the growth channels grow until they filled the chan-
nels to ensure a constant environment from the beginning of the measurements. We selected
5-20 growth channels to track simultaneously in the time-lapse. The time-lapse intervals were
changed depending on the growth conditions; we set the interval so that approximately 50 time
points are included per mean generation time, which ranged from 30 sec - 3 min. The expo-
sure time of excitation light was adjusted depending on the mean fluorescence intensity of the
samples, which ranged from 100 - 2,000 msec.

Methods to estimate growth parameters

Population growth rate is determined by counting the number of cell divisions at time t (N(t))
and the number of cells that divided between t and t+∆t (D(t)), where ∆t is time-lapse interval,
and by calculating Λp = 1

n∆t

∑n−1
i=0 ln

(
N(i∆t)+D(i∆t)

N(i∆t)

)
, where n is the number of time-points in

the measurements. To evaluate the error ranges, we utilized a bootstrapping method, in which
the number of cell division events between t and t+ ∆t is determined by N(t) trials of division
with the probability of D(t)/N(t). The same procedure was done for all the time points and
population growth rate was calculated for the produced dataset in each cycle. By repeating the
resampling and the evaluation 10,000 cycles, the error ranges were evaluated by (mean) ± (2
standard deviation) or 95% confidence interval of the resampled values.

The generation time distribution is related to the age-specific division rate b(τ) by g(τ) =
b(τ) exp

[
−
∫ τ
0 b(τ

′)dτ ′
]

(SI Appendix Table S4). We measured the age-specific division rate

from the single-cell data using b(τ) = −1
∆t ln

(
Na(τ)−Da(τ)

Na(τ)

)
, where Na(τ) is the number of cells

that reached age τ , and Da(τ) is the number of cells that divided between age τ and τ +∆t. We
determined the generation time distribution g(τ) and the mean and the variance of generation
time as explained in the simulation section below. The errors of the growth parameters associated
with generation time were also estimated in a bootstrap manner, in which the number of cell
divisions at age τ is determined by Na(τ) trials of division with the probability of Da(τ)/Na(τ).
The same procedure was done for all ages and the mean and variance of generation time were
calculated from the produced dataset in each cycle. By repeating this resampling 10,000 cycles,
we evaluated the error ranges of the parameters by (mean) ± (2 standard deviation) or by 95%
confidence interval.

We confirmed by simulation that these estimators provide precise measures of population
growth rate and generation time distributions both with and without cell removal as explained
below (SI Appendix Fig. S6-S10). The values of the measurement results on the growth param-
eters are shown in SI Appendix Table S1.
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THEORY AND SIMULATION

Theory of age-structured population model

Model setting Below we derive several mathematical relations that interconnect growth pa-
rameters based on a simple age-structured population model (Figure 3D). The more detailed
and mathematically rigorous derivations can be found in [7, 8, 9].

Here we assume that cells simply divide probabilistically accoroding to age-specific division
probability b(τ)δτ , where τ is age (= time elapsed since previous division) (Figure 3D). b(τ) is
called hazard function in the context of survival analysis [10]. The probability for a newborn
cell to stay undivided until age τ = nδτ (n = 0, 1, 2, · · · ) is

B(τ) =
n−1∏
i=0

(1 − b(iδτ)δτ) ≈
n−1∏
i=0

e−b(iδτ)δτ = e−
Pn−1

i=0 b(iδτ)δτ −→ e−
R τ
0 b(τ ′)dτ ′

(δτ → 0). (1)

Let g(τ)δτ be the probability for a newborn cell to divide at age τ (g(τ) is called (cellular)
generation time distribution). By definition, g(τ)δτ = B(τ) · b(τ)δτ . Therefore,

g(τ) = b(τ)B(τ) = −dB(τ)
dτ

(2)

from (1). b(τ), B(τ), and g(τ) are equivalent in terms that knowing one of them allows the
derivation of the other two by the relations in SI Appendix Table S4.

An important growth parameter, mean generation time 〈τ〉g =
∫∞
0 τg(τ)dτ , is given directly

from B(τ) as

〈τ〉g =
∫ ∞

0
B(τ)dτ. (3)

Moreover, the variance of generation time is also given by

Vg = 〈τ2〉g − 〈τ〉2g = 2
∫ ∞

0
τB(τ)dτ −

(∫ ∞

0
B(τ)dτ

)2

. (4)

As explained below, we utilized these relations to estimate the means and the variances of
generation time in the data analysis.

Population growth rate and age distribution Consider an exponentially growing cell
population in which all the members grow and divide according to the scheme in Figure 3D. We
assume that the environment is constant and b(τ) is unchanged over the time-course as well as
among the cells. The growth rate and age distribution of population eventually converge to a
constant value and stationary distribution after a sufficiently long time.

Let ψp(τ) be stationary age distribution of population, and N(t) be the number of cells in
the population at time t. The number of cells whose age falls into the fraction [τ, τ + δτ ] at time
t is N(t)ψp(τ)δτ . Among them, N(t)ψp(τ)δτ · (1 − b(τ)δτ) cells will constitute the age fraction
[τ + δt, τ + δτ + δt] at time t+ δt. Therefore,

ψp(τ + δt)δτ =
N(t)ψp(τ)δτ · (1 − b(τ)δt)

N(t+ δt)
. (5)

The denominator reflects the increase of cell number in the population by proliferation. When
Λp is population growth rate,

N(t+ δt) = N(t)eΛpδt ≈ N(t)(1 + Λpδt). (6)

From (5) and (6), we obtain
dψp(τ)
dτ

= −(b(τ) + Λp)ψp(τ).
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Solving this equation finds

ψp(τ) = Ce−Λpτe−
R τ
0 b(τ ′)dτ ′

= Ce−ΛpτB(τ), (7)

where C is a constant.
Next we determine C. Among N(t) cells at time t, N(t)

(∫∞
0 ψp(τ)b(τ)dτ

)
δt cells divide by

t+ δt, and constitute ψp(0)δt fraction at time t+ δt. Therefore,

N(t+ δt) = N(t) +N(t)
(∫ ∞

0
ψp(τ)b(τ)dτ

)
δt = N(t)

{
1 +

(∫ ∞

0
ψp(τ)b(τ)dτ

)
δt

}
, (8)

and

ψp(0)δt =
2N(t)

(∫∞
0 ψp(τ)b(τ)dτ

)
δt

N(t+ δt)
. (9)

The factor 2 in (9) comes from the fact that each division produces two cells with age=0. From
(6) and (8),

Λp =
∫ ∞

0
ψp(τ)b(τ)dτ. (10)

Hence, from (9),
ψp(0) = 2Λp. (11)

From (7) and (11), we obtain
ψp(τ) = 2Λpe

−ΛpτB(τ). (12)

The population growth rate Λp can be determined from B(τ) because ψp(τ) must satisfy∫∞
0 ψp(τ)dτ = 1. Thus, from (12), an important relation is derived:∫ ∞

0
e−ΛpτB(τ)dτ =

1
2Λp

. (13)

Also, inserting (12) into (10) finds ∫ ∞

0
2g(τ)e−Λpτdτ = 1, (14)

which is called the Euler-Lotka equation [11]. The equations (13) and (14) allow the calculation
of population growth rate Λp from the information of generation time distribution (B(τ) or g(τ))
at least numerically. Thus, generation time distribution uniquely determines the stationary age
distribution ψp(τ) by (12).

The Euler-Lotka equation (14) is analytically solvable only in the limited cases. When g(τ)

is gamma distribution (i.e., g(τ) = τk−1e−
τ
θ

Γ(k)θk , where k(> 0) is shape parameter, θ(> 0) is scale
parameter, and Γ(·) is gamma function), we can find the anlytical solution as

Λp =
2

1
k − 1
θ

.

Therefore,

Td =
θ log 2

2
1
k − 1

.

By defining single-cell growth rate as λ ≡ log 2
〈τ〉g , we introduce growth rate gain as

Λp − λ

λ
=

〈τ〉g − Td

Td
.
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In the case where g(τ) is gamma, the growth rate gain is

〈τ〉g − Td

Td
=

kθ − θ log 2

2
1
k −1

θ log 2

2
1
k −1

=
k
(
2

1
k − 1

)
log 2

− 1. (15)

Since 2
1
k = e

log 2
k = 1 +

(
log 2

k

)
+ 1

2!

(
log 2

k

)2
+ · · · ,

〈τ〉g − Td

Td
=

∞∑
i=1

1
(i+ 1)!

(
log 2
k

)i

. (16)

The right-hand side of (16) is positive. Thus, the population doubling time is smaller than the
mean generation time. In fact, the positivity of growth rate gain is proven generally true even
when g(τ) is not gamma, as shown below.

The coefficient of variation (η) of gamma distribution is
√

1
k . Therefore, from (15) and (16),

〈τ〉g − Td

Td
=

2η2 − 1
η2 log 2

− 1 =
∞∑
i=1

(log 2)i

(i+ 1)!
η2i.

Hence, the growth rate gain is determined solely by CV when g(τ) is gamma.

Inequality between mean generation time and population doubling time The Euler-
Lotka equation (14) indicates that

g∗(τ) = 2g(τ)e−Λpτ (17)

is also a probability density function (we explain below that g∗(τ) has its own meanings). Based
on this fact, one can show that population doubling time Td = log 2

Λp
(= time required for the

population to double the number of cells) is smaller than mean generation time 〈τ〉g.
From (17),

eΛpτ

2
=

g(τ)
g∗(τ)

Λpτ log2 e− 1 = log2

g(τ)
g∗(τ)

. (18)

Multiplying both sides by g(τ) and integrating from zero to infinity finds

Λp〈τ〉g log2 e− 1 = D[g||g∗],

where D[g||g∗] ≡
∫∞
0 g(τ) log2

g(τ)
g∗(τ)dτ is the Kullback-Leibler divergence, which is always non-

negative [12]. Since Λp log2 e = 1
Td

,

〈τ〉g − Td

Td
= D[g||g∗] ≥ 0. (19)

The equality holds when g∗(τ) = g(τ). This condition is satisfied only when g(τ) = δ(τ − 〈τ〉g).
Therefore, population doubling time is strictly lower than mean generation time for any realistic
case in which variability of cell division times is observed.
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In a similar manner, we can show that the mean of g∗(τ) is smaller than Td: Multiplying
the both-hand sides of (18) by −g∗(τ) and integrating from zero to infinity finds

1 − Λp〈τ〉g∗ log2 e = D[g∗||g].

Therefore,
Td − 〈τ〉g∗

Td
= D[g∗||g] ≥ 0. (20)

From (19) and (20),
〈τ〉g − 〈τ〉g∗

Td
= D[g||g∗] +D[g∗||g] ≥ 0.

Based on these relations, we can understand the order of the growth parameters: 〈τ〉g∗ ≤ Td ≤
〈τ〉g.

Ancestral generation time distribution The function g∗(τ) represents the ancestral gen-
eration time distribution, i.e. probability density function of the parental cell’s generation time
in a population.

Let N(t) be the number of cells at time t in a population growing at a constant rate Λp.
We assume N(t) is sufficiently large. The cells at age τ ′ at time t originated from the parental
cells that divided at time t− τ ′ among N(t− τ ′) = N(t)e−Λpτ ′

cells. The number of cells that
divided at t− τ ′ at age τ is N(t− τ ′)ψp(τ)b(τ)δτ , and 2N(t− τ ′)ψp(τ)b(τ)δτ newborn cells are
produced. Among them, 2N(t − τ ′)ψp(τ)b(τ)δτ · B(τ ′) cells reach age τ ′ at time t. Therefore,
the probability that the generation time of a parental cell becomes τ is

gp(τ)δτ =

∫∞
0 2N(t− τ ′)ψp(τ)b(τ)δτ ·B(τ ′)dτ ′

N(t)
.

Thus,

gp(τ) =
∫ ∞

0
2e−Λpτ ′ · 2Λpe

−ΛpτB(τ)b(τ)B(τ ′)dτ ′

= 4Λpg(τ)e−Λpτ

∫ ∞

0
e−Λpτ ′

B(τ ′)dτ ′

= 2g(τ)e−Λpτ ,

which is equivalent of g∗(τ) (17). To obtain the final result, we utilized the relation (13).

Generation time distributions along cell lineages Next we consider generation time
distributions along two types of cell lineages. In one situation, we obtain a lineage by tracking
a single cell in isolation in the time-forward manner, selecting just one of the two sibling cells
randomly at every cell division. See refs [13, 14] for the experimental realization of such tracking
method. This type of cell lineage can be also obtained by mother machine [15] when mother-
daughter distinction is negligible. If a lineage obtained in this manner is sufficiently long, the
empirical distribution of generation time along the lineage should converge to g(τ).

In the other situation, we extract a lineage from a population, i.e. selecting a cell in a
population and tracking back along its past history over many generations. A lineage extracted
in this manner is called a time-backward, retrospective, or time-reversed history in the literatures
[16, 17, 18]. In this case, the probability that the generation time of the parental cell of the
selected cell becomes τ is gp(τ)δτ . This is also true for all the ancestral cells on this lineage.
Thus, the empirical distribution of generation time along the lineage obtained in this manner
should converge to gp(τ) = g∗(τ) instead of g(τ).

Since g(τ) and g∗(τ) can be understood as the typical generation time distributions along the
lineages in isolation and within a population, respectively, (19) shows that the relative difference
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between the mean generation time and the population doubling time, 〈τ〉g−Td

Td
, is directly related

to the different statistics of generation time along those two lineage types. The difference between
g(τ) and g∗(τ) comes from the fact that the descendant cells of the fast dividing cells tend to
be over-represented in the population (Figure 1).

In our previous study, we derived g∗(τ) based on path integrals and a variational optimization
principle and called the lineages with g∗(τ) optimal [9]. The path integral viewpoint is in fact
quite powerful, providing the conceptual understanding as to why the lineages with g∗(τ) are
optimal, and makes the connection with evolutionary selection: the age distribution along the
optimal lineages, ρ∗(τ) = 1

〈τ〉g∗
∫∞
τ g∗(τ ′)dτ ′, directly reports the strength of selection acting at

each age. Thus, g∗(τ) itself has a clear biological meaning.

Simulation test for the precision of growth parameter estimators

As described in the main text, we calculated population growth rate (doubling time) and mean
generation time from the lineage tree structures (e.g. Fig. 2D and SI Appendix Fig. S4). Below
we explain how we estimated those growth parameters from the data, and confirm the precision
of the estimators by simulation.

Simulation setting To evaluate the precision of the estimators for the growth parameters,
we produced the artificial datasets of cell proliferation by simulation in which all the cells divide
probabilistically in an age-dependent manner according to the scheme in Figure 3D. Three cases
of generation time distribution were tested in the simulation (SI Appendix Fig. S6A-C):

(Case A) Gamma distribution (〈τ〉g = 50, Vg = 400)

g(τ) =
τk−1e−

τ
θ

Γ(k)θk
, k =

50
8
, θ = 8,

(Γ(k) is gamma function).

(Case B) Gamma distribution with large variance (〈τ〉g = 50, Vg = 800)

g(τ) =
τk−1e−

τ
θ

Γ(k)θk
, k =

50
16
, θ = 16.

(Case C) Shifted gamma distribution (〈τ〉g = 50, Vg = 400)

g(τ) =

0 (τ < a)
(τ−a)k−1e−

τ−a
θ

Γ(k)θk (τ ≥ a)
, k = 4, θ = 10, a = 10.

Gamma and shifted gamma distributions are often used to approximate the real generation
time distributions [8, 9], though neither of them consistently agreed with all the experimental
distributions we obtained.

By fixing the distribution type to gamma or shifted gamma, we can easily calculate popula-
tion growth rate from the Euler-Lotka equation (14): For gamma distribution,

Λp =
2

1
k − 1
θ

;

and for shifted gamma distribution, Λp is the single positive root of

2e−Λpa (1 + Λpθ)
−k = 1.

In the three cases above, population doubling times (Td = ln 2
Λp

) in arbitral time unit (a.t.u.) are
47.279 (Case 1), 44.660 (Case 2), and 47.329 (Case 3), respectively, which are all smaller than
the mean generation time (〈τ〉g = 50). Good estimators must retrieve those pre-assigned values
from the simulation datasets.
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Population growth rate Population growth rate Λp is usually evaluated as the slope of a
growth curve in the semi-log plot for an exponentially growing cell population (Figure 1C).
Here we denote the growth rate estimator calculated in this manner as Λ̂(1)

p . Although the
estimator Λ̂(1)

p is simple and straightforward, it cannot be applied to a cell population in dynamics
cytometer because a part of the cells in this device are constantly removed. Instead of Λ̂(1)

p , we
can also estimate population growth rate by directly counting the division events in a population,
which is feasible in the single-cell measurements.

Let N(t) and D(δt)(t) be the numbers of cells at time t and of cells that divided between t
and t + δt, respectively. Note that N(t + δt) = N(t) + D(δt)(t) when no cell is removed from
the population. We can introduce instantaneous division rate, which satisfies N(t) +D(δt)(t) =
N(t)eΛ̂

(δt)(t)δt. Therefore,

Λ̂(δt)(t) =
1
δt

log

(
N(t) +D(δt)(t)

N(t)

)
.

For balanced-growth cultures, Λ̂(δt)(t) must be nearly constant over the time-course. Hence the
mean of Λ(δt)(t) is expected to give the correct population growth rate. Thus, we defined a new
population growth rate estimator Λ̂(2)

p as

Λ̂(2)
p = 〈Λ̂(∆t)〉 =

1
n∆t

n−1∑
i=0

log

(
N(i∆t) +D(∆t)(i∆t)

N(i∆t)

)
, (21)

where n is the number of time points in the single-cell time-lapse measurement, and ∆t is the
time-lapse interval. Λ̂(2)

p has an advantage over Λ̂(1)
p because it is applicable even with cell

removal provided that the number of cells removed at each time point is small relative to the
total population size; we show below how the precision of Λ̂(2)

p is altered depending on population
size N(t).

Evaluation of population growth rate estimators by simulation (without cell re-
moval) First, we consider growing cell populations without cell removal like standard single-
cell time-lapse microscopy on agarose pad (see [19] for example). To evaluate the precision of
the estimators under experimentally realistic conditions, we produced 20 lineage trees per one
cycle for the duration of 6× mean generation time (i.e. TL = 300 a.t.u.). Each tree is orignated
from a single cell whose age at t = 0 was determined by the expected population age distribu-
tions. For each cycle of simulation, we calculated T̂

(1)
d = ln 2

Λ̂
(1)
p

and T̂
(2)
d = ln 2

Λ̂
(2)
p

by assuming the

time-lapse interval ∆t = 1 a.t.u., and evaluated the error ranges by repeating the simulation in
1,000 cycles.

The results show that the both Λ̂(1)
p and Λ̂(2)

p correctly retrieved the population growth rates
under all the distribution conditions (SI Appendix Fig. S6D-F). The error ranges of T̂ (2)

d were
slightly larger than those of T̂ (1)

d , though small enough to distinguish the difference between
〈τ〉g and Td. Therefore, the both estimators are usable for evaluating population growth rate in
standard single-cell time-lapse microscopy.

Evaluation of population growth rate estimators by simulation (with cell removal)
Next we consider a population proliferating in a similar setting of dynamics cytometer. We now
assume that cells proliferate in growth channels aligned on an array (SI Appendix Fig. S7).
Cells are stably harbored in the “safety section” in the middle of the growth channel. The
length and the width of the growth channel determine the cell capacity of the safety section. In
the simulation, we assumed that the division of a cell in the safety section places two newborn
cells; one at the same position and the other at one of the neighboring positions in the channel.
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Placement of a newborn cell at a different position move a part of the cells on the row toward
the end of the growth channel as schematically explained in SI Appendix Fig. S7. Cells outside
the safety section was removed at every time point from the analysis as done in the analysis on
the experimental data.

We simulated cell proliferation processes for the duration of 100× mean generation time
using the same three generation time distributions as above under differnt conditions of cell
capacity of the safety section. For each cycle of simulation, we produced the data of a single
growth channel, and extracted the information of lineage tree assuming that ∆t = 1 a.t.u. Then,
we calculated T̂ (2)

d .
The result showed that the precision of the estimator T̂ (2)

d depended on the number of cell in
a row (NR) in the safety section: When NR is larger than ∼5, T̂ (2)

d reported correct population
doubling time, though it underestimated the true value when NR is less than ∼5 (SI Appendix
Fig. S8). This reliability bound was robust against the different generation time conditions (SI
Appendix Fig. S8).

In our experiment, NR = 8 ∼ 10, thus the population doubling time estimated by T̂
(2)
d is

expected fairly precise.

Generation time distribution The simplest approach to estimate cellular generation time
distribution from lineage trees is sampling all the “measurable” generation times in the tree,
which is however apparently inappropriate because smaller generation times are inevitably over-
represented in the samples. To avoid this bias, we can instead estimate age-specific division rate
b(τ), which allows us to retrieve the information of generation time distributions (SI Appendix
Table S4).

Let Na(τ) and D(δτ)
a (τ) be the numbers of cells at age τ and of cells that divided between age

τ and τ+δτ , respectively. The number of cells at age τ+δτ is thus Na(τ+δτ) = Na(τ)−D(δτ)
a (τ)

when no cells are removed from the population. Here we introduce age-specific division rate b(τ),
which satisfies Na(τ) −D

(δτ)
a (τ) = Na(τ)e−b(τ)δτ . Therefore,

b(τ) = − 1
δτ

log

(
Na(τ) −D

(δτ)
a (τ)

Na(τ)

)
.

Note that Na(τ) and D
(δτ)
a (τ) are obtainable from lineage trees. In the actual analysis on the

experimental data, we estimated age-specific division rate at age i∆t (i = 0, 1, 2, · · · ) by

b̂(i∆t) = − 1
∆t

log

(
Na(i∆t) −D

(∆t)
a (i∆t)

Na(i∆t)

)
,

where ∆t is the time-lapse interval.
Based on the relation (1), we estimated B(τ) (survival function of g(τ)) as

B̂(i∆t) =

{
exp

[
−
∑i−1

j=0 b̂(j∆t)∆t
]

(i ≥ 1)

1 (i = 0)
, (22)

and mean generation time as
〈τ̂〉(1)

g =
∑

i

B̂(i∆t)∆t, (23)

from the relation (3).
SI Appendix Fig. S9 confirms that B̂(τ) correctly retrieves the survival function of pre-

assigned generation time distributions. The probability density function g(τ) is related to B(τ)
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by (2). Therefore, the probability for a generation time to fall into the interval [τ, τ + ∆τ) is∫ τ+∆τ
τ g(τ ′)dτ ′ = B(τ)−B(τ + ∆τ). From this relation, we estimated the histogram of g(τ) by

ĥg(i∆τ, (i+ 1)∆τ) = B̂(i∆τ) − B̂((i+ 1)∆τ), (24)

where ∆τ is the bin size of the histogram. This estimator was used to obtain the histograms in
Fig. 2A and Extended Data Fig. 11.

Evaluation of generation time estimators by simulation We evaluated the precision
of the estimators B̂(τ) and 〈τ̂〉(1)

g using the simulation datasets produced above for population
growth rate. The results confirmed that these estimators were precise in the both cases of
with/without cell removal, irrespectively of generation types (SI Appendix Fig. S6, S8, and
S9). We also confirmed that the simple sample means of all the measurable generation times
in lineage trees, which we denote 〈τ̂〉(2)

g , are biased, being much smaller than the true values
(SI Appendix Fig. S6 and S8). 〈τ̂〉(2)

g is close to 〈τ〉g∗ ; it is understandable because 〈τ̂〉(2)
g in

fact evaluates the mean of ancestral generation time distribution, which is equivalent of g∗(τ)
as shown above.

Estimator for variance of generation time The variance of generation time can be calcu-
lated directly from B(τ) by (4). Based on this relation, we searched for an appropriate estimator
for Vg, finding that

V̂ (1)
g = 2

[
imax∑
i=0

{(
i+

1
2

)
∆t
}
B̂(i+ 1)

]
−
(
〈τ̂〉(1)

g − ∆t
)2

(25)

correctly reports the pre-assigned values of variance in all the settings of the simulation (SI
Appendix Fig. S10, imax∆t is the maximum age observed in a lineage tree). We used this
estimator in the analysis of the experimental data (Figure 6 in the main text). In SI Appendix
Fig. S10, we also show the values of the estimator

V̂ (2)
g = 2

[
imax∑
i=0

{(
i+

1
2

)
∆t
}
B̂(i+ 1)

]
−
(
〈τ̂〉(1)

g

)2
, (26)

whose definition is more straightforward than that of
ˆ

V
(1)
g from (4), but significantly underesti-

mated the true values.

Theoretical prediction of population growth rate from generation time distribution
When the age-structured population model in Figure 3D is valid, generation time distribution
uniquely determines population growth rate by the Euler-Lotka equation (14). Equivalently, we
can also determine population growth rate from survival function B(τ) based on the relation
(13).

We predicted population growth rate Λp and doubling time Td from the estimator B̂(τ) by
numerically searching for the root of

Λp

imax−1∑
j=0

B̂(j∆t) + B̂((j + 1)∆t)
2

e−Λp·j∆t =
1
2
,

where imax∆t is the maximum age observed in a lineage tree. We denoted the population growth
rate estimator calculated in this way as Λ̂(th)

p (doubling time, T̂ (th)
d = log 2

Λ̂p
(th) ).

The application of the estimators to the simulation datasets showed that T̂ (th)
d retrieved the

correct population doubling times under all the simulation conditions (SI Appendix Fig. S6D-F
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and S8). The precision of the estimator was unaltered by the difference of with/without cell
removal. Therefore, it is conceivable that the estimator T̂ (th)

d can predict the correct population
doubling times as long as the real cell populations follow the proliferation scheme in Figure 3D.

Theoretical prediction of population age distribution from generation time distri-
bution When cells follow the proliferation scheme in Figure 3D, generation time distribution
of single cells uniquely determines population age distribution by (12). From this, we calculated
theoretically estimated population age distribution by

ψ̂(th)
p (i∆t) = 2Λ̂(th)

p e−Λ̂
(th)
p (i∆t)B̂(i∆t).

Note that ψ̂(th)
p (i∆t) is uniquely calculated only from the information of single-cell lineage trees

and time-lapse interval with no assumption on distribution type for generation time.

Application of the estimators to experimental data SI Appendix Table S1 shows the
single-cell growth rates measured by λ̂(1) ≡ ln 2

〈τ̂〉(1)g

and λ̂(2) ≡ ln 2

〈τ̂〉(2)g

compared with population

growth rates measured by Λ̂(2)
p , using the actual experimental data. Comparison between the val-

idated single-cell growth rate estimator λ̂(1) and population growth rate estimator Λ̂(2)
p confirms

that population can grow faster than single cells on average under most conditions.
We also show the mean elongation rates (µ̂r) in SI Appendix Table S1. Elongation rate is

obtained by fitting an exponential curve to a cell size elongation curve of an individual cell, and
its mean among cells in a population is often used as a proxy of population growth rate in many
single-cell studies. Here, the estimator µ̂r denotes the mean of elongation rates from all the cells
in the lineage trees whose full generation data were obtained (i.e., cells at the very beginning of
the lineage trees and those removed from the growth channels before division were excluded).
The result shows that µ̂r is significantly deviated from Λ̂(2)

p in most cases, which indicates that
mean elongation rate is not a suitable measure of population growth rate.
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[18] Mustonen V, Lässig M (2010) Fitness flux and ubiquity of adaptive evolution. Proc Natl
Acad Sci U S A 107(9):4248-53.

[19] Stewart EJ, Madden R, Paul G, Taddei F (2005) Aging and death in an organism that
reproduces by morphologically symmetric division. PLoS Biol 3(2):e45.

14



Supplemental Tables

Table S1: Growth Rate Estimates from the Experimental Data. λ̂(1) = log 2

〈τ̂〉(1)g

, and λ̂(2) = log 2

〈τ̂〉(2)g

.

µ̂
(2)
r is the mean of elongation rate of the cells which were born and reached the next division

in the lineage trees. The unit is 10−3 min−1. The error ranges are 95% bootstrap confidence
interval.

Strain Conditions λ̂(1) Λ̂
(2)
p λ̂(2) µ̂

(2)
r

F3 rpsL-gfp M9 cas. acids, 37◦C 26.4 (25.9 - 26.8) 27.1 (26.5 - 27.8) 29.4 (28.9 - 30.0) 27.3 (27.2 - 27.5)
M9 LB, 37◦C 23.8 (23.4 - 24.3) 24.7 (24.4 - 25.2) 26.5 (25.8 - 27.1) 27.3 (25.6 - 29.6)

M9 glucose, 37◦C 12.4 (12.2 - 12.7) 13.6 (13.1 - 14.1) 14.8 (14.6 - 15.0) 14.0 (13.9 - 14.2)
M9 glucose, 30◦C 6.60 (6.46 - 6.74) 7.05 (6.98 - 7.12) 8.22 (8.05 - 8.41) 7.79 (7.65 - 7.95)
M9 glycerol, 37◦C 4.09 (4.00 - 4.17) 4.24 (4.20 - 4.28) 5.03 (4.86 - 5.23) 4.41 (4.34 - 4.49)
M9 glycerol, 30◦C 4.49 (4.41 - 4.57) 4.69 (4.66 - 4.73) 5.37 (5.25 - 5.48) 5.02 (4.97 - 5.07)

F3 T7-venus M9 glucose, 37◦C 9.40 (9.25 - 9.54) 9.81 (9.74 - 9.88) 11.3 (11.1 - 11.4) 10.3 (10.2 - 10.3)
M9 glucose, 30◦C 5.28 (5.18 - 5.38) 5.57 (5.40 - 5.57) 6.03 (5.94 - 6.11) 5.72 (5.65 - 5.79)

F3 LVS M9 glucose, 37◦C 9.52 (9.26 - 9.77) 9.97 (9.85 - 10.1) 11.9 (11.6 - 12.1) 11.6 (11.4 - 11.7)

BrF2 M9 glucose, 37◦C 20.9 (20.6 - 21.1) 20.9 (20.7 - 21.2) 22.0 (21.8 - 22.1) 22.1 (22.0 - 22.2)
M9 glycerol, 37◦C 10.9 (10.8 - 10.9) 11.0 (10.9 - 11.1) 11.5 (11.4 - 11.6) 11.6 (11.5 - 11.7)

Table S2: List of E. coli Strains Used in This Study.
Name Genotype
F3 rpsL-gfp W3110 ∆fliC ∆fimA ∆flu pUA66-rpsL
F3 T7-venus W3110 ∆fliC ∆fimA ∆flu lacZ ::T7RNAP intC ::PT7-venus
F3 LVS W3110 ∆fliC ∆fimA ∆flu intC ::PLlacO−1-venus-smR
BrF2 rpsL-gfp B/r ∆fimA ∆flu pUA66-rpsL

Table S3: List of Culture Media Used in This Study.
Name Composition
M9 glucose M9 base + 0.2% (w/w) glucose + 1/2 MEM amino acids solution
M9 glycerol M9 base + 0.2% (w/w) glycerol
M9 casamino acids M9 base + 0.2% (w/w) glucose + 1% (w/w) casamino acids
M9 LB M9 base + 1% (w/w) LB medium + 1/2 MEM amino acids solution

Table S4: Relationships between b(τ), B(τ), and g(τ).

Input function Relations

b(τ) B(τ) = e−
R τ
0 b(τ ′)dτ ′

, g(τ) = b(τ)e−
R τ
0 b(τ ′)dτ ′

B(τ) b(τ) = −d log B(τ)
dτ , g(τ) = −dB(τ)

dτ

g(τ) B(τ) =
∫∞
τ g(τ ′)dτ ′, b(τ) = g(τ)

R ∞
τ g(τ ′)dτ ′
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Table S5: Mother-Daughter Correlation of Generation Time.

Strain Conditions Correlation coefficient
F3 rpsL-gfp M9 cas. acids, 37◦C -0.06 ± 0.03

M9 LB, 37◦C -0.06 ± 0.04
M9 glucose, 37◦C 0.26 ± 0.02
M9 glucose, 30◦C 0.13 ± 0.03
M9 glycerol, 37◦C 0.08 ± 0.03
M9 glycerol, 30◦C -0.08 ± 0.03

F3 T7-venus M9 glucose, 37◦C 0.08 ± 0.02
M9 glucose, 30◦C 0.02 ± 0.03

F3 LVS M9 glucose, 37◦C 0.11 ± 0.03
BrF2 M9 glucose, 37◦C -0.18 ± 0.03

M9 glycerol, 37◦C 0.02 ± 0.02

Supplemental movie

Movie S1. Time-lapse movie of BrF2 rpsL-gfp strain proliferating in a growth channel of
dynamics cytometer. The culture condition of this experiment was M9 glycerol medium at
37◦C. Bar, 5 µm.
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Supplemental Figures
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Figure S1: Additional Information on Dynamics Cytometer. A. Device assembly scheme. We
created the microchannels directly on a glass coverslip by chemical etching. The surface of
the coverslip was chemically decorated with biotin, which allowed sealing of the microchannel
region by streptavidin-decorated cellulose membrane. To flow culture media, we attached PDMS
pad on the coversilp via square frame-seal chamber (internal volume, 25 µl). The PDMS pad
possesses one medium inlet, two outlets, and bubble trap groove. B. Bird-view scheme of the
microchannels. Culture medium flows both in the flow channels and above the membrane to
maintain the culture conditions around cells constant. C. The arrangement of microchannels
and cellulose membrane. The dimension of one flow channel is 2000 µm (l)×50 µm (w)× 15 µm
(d), and that of growth channel is 30 µm (l)× 3 µm (w)×1 µm (d), placed perpendicular to the
flow channels on an array. The central part of the microchannel region is covered by cellulose
membrane with the both ends of the flow channels left open to introduce medium in the flow
channels. D. A photo of the device mounted on microscope stage.
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Figure S2: Stability of Growth Rates in Dynamics Cytometer. We defined instantaneous division
rate at time t as Λ(t) = 1

∆t log
(
1 + D(t)

N(t)

)
, where ∆t is time-lapse interval; N(t) is the number

of cells we monitor in the device at t; and D(t) is the number of cells that divided during the
time interval (t, t+ ∆t] among N(t) cells. To check the stability of growth rate, we plotted the
cumulative of division probability (Λ(t)∆t) against time t (t/∆t is the number of time points).
The slopes of the plots must be nearly constant if the division rates are stable over the time-
course, which is indeed the case here. The broken lines is y = Λpt. The E. coli strains and
the cultivation conditions are shown on the top-left corner of each plot. The number of division
events observed at each time point D(t) is low, which makes the estimate of each value of Λ(t)
unreliable and requires the introduction of arbitrary time window for averaging. To avoid this,
we here plotted the cumulative of division probability instead of directly plotting instantaneous
division rate.
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Figure S3: Location independence of growth statistics within growth channels. A. Outline of
the analysis. We first measured age-specific division rate at the different locations L1 ∼ L4

within a growth channel by counting the number of cells with age τ at Li (represented as
Na(τ |Li)), and the number of cells that divided between age τ and τ + ∆t at Li (represented
as Da(τ |Li)). The boundaries of the locations were determined so that the total number of
cells Ntotal(Li) =

∑
τ Na(τ |Li) become identical among the different locations Li. Age-specific

division rate b(τ |Li) is given by b(τ |Li) = − 1
∆t ln

(
Na(τ |Li)−Da(τ |Li)

Na(τ |Li)

)
. Age-specific division rate

b(τ |Li) determines B(τ |Li), the survival function of generation time distribution by (22), and
the mean and variance by (23) and (25), respectively. B-E. Comparison of generation time
statistics at different locations in a single growth channel. The results from the experiments for
F3 rpsL-gfp in M9 glucose medium at 37◦C (B and C) and for BrF2 rpsL-gfp in M9 glycerol
medium at 37◦C (D and E) are shown. We compared the survival functions (B and D) and the
means and variances of generation time (C and E) measured at different locations L1 ∼ L4. The
values in the parencies in C and E show the 95% bootstrap confidence intervals.
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Figure S4: Long Lineage Trees of BrF2. A. Lineage tree of BrF2 in M9 glucose medium at 37◦C.
B. Lineage tree of BrF2 cultured in M9 glycerol medium at 37◦C.
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Figure S5: Growth and Division Dynamics along Long Single-Cell Lineages. A. Dynamics
of F3 rpsL-gfp strain in M9 glucose medium at 37◦C. Black line represents the dynamics of
the lineage which stayed in the growth channel over 5,000 min. Magenta line represents the
dynamics of a different single-cell lineage, in which a filamentous cell emerged (indicated by
the arrow). All the lineages descended from this filamentous cell quickly disappeared from the
growth channel. B. Dynamics of BrF2 rpsL-gfp strain in M9 glucose medium at 37◦C. In this
case, the black and magenta lineages were splitted from the same ancestral cell around t = 2, 400
min, but the magenta lineage, in which a filamentous cell appeared, again disappeared from the
growth channel. C. Dynamics of BrF2 rpsL-gfp strain in M9 glycerol medium at 37◦C. In this
combination of cell strain and growth condition, we did not observe filamentous cells in any
lineages. This is probably due to the fact that the cell size of normal cells in this condition was
smaller than that in the other conditions.
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Figure S6: Evaluation of Growth Estimators for Cell Population without Cell Removal. A-
C. Generation time distributions used in the simulation: Gamma distribution (A), gamma
distribution with large variance (B), and shifted gamma distribution (C). Magenta filled curves
show probability density function (g(τ), on the right axis), and blue curves survival function
(B(τ) =

∫∞
τ g(τ ′)dτ ′, on the left axis). Vertical broken line indicates the common mean of the

distributions, 〈τ〉g = 50. D-F. Evaluation of the precision of the estimators under the generation
time conditions on the left. Magenta points represent the estimators for population doubling
time (T̂ (1)

d , T̂ (2)
d , and T̂

(th)
d , see SI Appendix Text for the definitions), and green points the

estimators for mean generation time (〈τ̂〉(1)
g and 〈τ̂〉(2)

g , see SI Appendix Text for the definitions).
The error bars are the standard deviations of the estimated values in 1,000 simulation cycles.
The horizontal broken lines indicate the true values of the growth parameters: green for 〈τ〉g,
magenta for Td, and blue for 〈τ〉g∗ .
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Figure S7: Simulation Cycle of Cell Proliferation in a Condition Similar to Dynamics Cytometer.
In this scheme, safety section in the growth channel is shown as the red background, where
(NR = 8) × (NC = 3) = 24 cells can stay. Each cell division (#13 in this scheme) places two
newborn cells, one at the same position (#25), and the other at one of the neighboring positions
(#26), and moves a portion of the cells on the same row (#6-#8) toward the right end. If the
#26 cell is placed at the position of the #4 cell, the cells #1-#4 will be moved toward the left
end. If the #26 cell is placed at the position of the #5 cell, the program randomly chooses
the direction of the cell movement: If the right direction is selected, the cells #5-#8 will be
moved toward the right end; if the left is selected, the cells #1-#5 will be moved toward the
left end. At every check time point with the time interval of 1 a.t.u., the program removes the
cells outside the safety section. By repeating this procedure for the duration of 5,000 a.t.u., we
exported the datasets of cell proliferation for the analysis.
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Figure S8: Evaluation of Growth Estimators for Cell Population with Cell Removal. We ex-
amined the precision of the estimators using the simulation datasets produced under different
conditions of generation time distribution, the number of cells in each column of cell array in
the safety section of growth channel (NC), and the number of cells in each row (NR). Magenta
points represent the population doubling time estimators: Square for T̂ (2)

d , and circle for T̂ (th)
d .

Green points represent the mean generation time estimators: Square for 〈τ̂〉(1)
g , and circle for

〈τ̂〉(2)
g . The error bars are the standard deviations of the estimated values in 1,000 simulation

cycles. The horizontal broken lines indicate the true values of the growth parameters: green for
〈τ〉g, magenta for Td, and blue for 〈τ〉g∗ .
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Figure S10: Evaluating the Estimators for the Variance of Generation Time When Applied to
the Simulation Datasets with Cell Removal. Magenta squares and blue circles represent the
estimator V̂ (1)

g and V̂ (2)
g , respectively (see (25) and (26) for the definitions). The error bars are

the standard deviations of the estimated values in 1,000 simulation cycles. V̂
(1)
g retrieves the

true values of variance (horizontal broken lines).
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Figure S11: Generation Time Distributions. Gray histograms are experimentally measured g(τ)
according to the estimator (24). The black curves represent the gamma distributions ( τk−1e−τ/θ

Γ(k)θk ,
where k is shape parameter, and θ is scale parameter) with their means and variances identical to
the experimental distributions (method of moments). The magenta curves represent the gamma
distributions estimated by a method of maximum likelihood using the histogram data. The E.
coli strains and culture conditions are shown at the upper-left corner of each panel.
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Figure S12: Correlations between Initial Cell Size and Generation Time in Constant Environ-
ments. We sampled the data of initial cell size and generation time from the cells which were
born and reached the next division in the lineage trees. Pearson correlation coefficients (r) are
shown in each panel, which are all slightly negative.
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